The Geography of Non-formal Manifolds
نویسنده
چکیده
We show that there exist non-formal compact oriented manifolds of dimension n and with first Betti number b1 = b ≥ 0 if and only if n ≥ 3 and b ≥ 2, or n ≥ (7 − 2b) and 0 ≤ b ≤ 2. Moreover, we present explicit examples for each one of these cases.
منابع مشابه
Ring structures of mod p equivariant cohomology rings and ring homomorphisms between them
In this paper, we consider a class of connected oriented (with respect to Z/p) closed G-manifolds with a non-empty finite fixed point set, each of which is G-equivariantly formal, where G = Z/p and p is an odd prime. Using localization theorem and equivariant index, we give an explicit description of the mod p equivariant cohomology ring of such a G-manifold in terms of algebra. This makes ...
متن کاملGeography of Non-Formal Symplectic and Contact Manifolds
Let (m, b) be a pair of natural numbers. For m even (resp. m odd and b ≥ 2) we show that if there is an m-dimensional non-formal compact oriented manifold with first Betti number b1 = b, there is also a symplectic (resp. contact) manifold with these properties.
متن کاملOn the Geography and Botany of Irreducible 4-manifolds with Abelian Fundamental Group
The geography and botany of smooth/symplectic 4-manifolds with cyclic fundamental group are addressed. For all the possible lattice points which correspond to non-spin manifolds of negative signature and a given homeomorphism type, an irreducible symplectic manifold and an infinite family of pairwise non-diffeomorphic non-symplectic irreducible manifolds are manufactured. In the same fashion, a...
متن کاملThe Geography Problem for Irreducible Spin Four-manifolds
We study the geography problem for smooth irreducible simplyconnected spin four-manifolds. For a large class of homotopy types, we exhibit both symplectic and non-symplectic representatives. We also compute the Seiberg-Witten invariants of all the four-manifolds we construct.
متن کاملNon existence of totally contact umbilical slant lightlike submanifolds of indefinite Sasakian manifolds
We prove that there do not exist totally contact umbilical proper slant lightlike submanifolds of indefinite Sasakian manifolds other than totally contact geodesic proper slant lightlike submanifolds. We also prove that there do not exist totally contact umbilical proper slant lightlike submanifolds of indefinite Sasakian space forms.
متن کامل