The Geography of Non-formal Manifolds

نویسنده

  • MARISA FERNÁNDEZ
چکیده

We show that there exist non-formal compact oriented manifolds of dimension n and with first Betti number b1 = b ≥ 0 if and only if n ≥ 3 and b ≥ 2, or n ≥ (7 − 2b) and 0 ≤ b ≤ 2. Moreover, we present explicit examples for each one of these cases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ring structures of mod p equivariant cohomology rings and ring homomorphisms between them

In this paper, we consider a class of connected oriented (with respect to Z/p) closed G-manifolds with a non-empty finite fixed point set, each of which is G-equivariantly formal, where G = Z/p and p is an odd prime. Using localization theorem and equivariant index, we give an explicit description of the mod p equivariant cohomology ring of such a G-manifold in terms of algebra. This makes ...

متن کامل

Geography of Non-Formal Symplectic and Contact Manifolds

Let (m, b) be a pair of natural numbers. For m even (resp. m odd and b ≥ 2) we show that if there is an m-dimensional non-formal compact oriented manifold with first Betti number b1 = b, there is also a symplectic (resp. contact) manifold with these properties.

متن کامل

On the Geography and Botany of Irreducible 4-manifolds with Abelian Fundamental Group

The geography and botany of smooth/symplectic 4-manifolds with cyclic fundamental group are addressed. For all the possible lattice points which correspond to non-spin manifolds of negative signature and a given homeomorphism type, an irreducible symplectic manifold and an infinite family of pairwise non-diffeomorphic non-symplectic irreducible manifolds are manufactured. In the same fashion, a...

متن کامل

The Geography Problem for Irreducible Spin Four-manifolds

We study the geography problem for smooth irreducible simplyconnected spin four-manifolds. For a large class of homotopy types, we exhibit both symplectic and non-symplectic representatives. We also compute the Seiberg-Witten invariants of all the four-manifolds we construct.

متن کامل

Non existence of totally contact umbilical‎ ‎slant lightlike submanifolds of indefinite Sasakian manifolds

‎We prove that there do not exist totally contact umbilical‎ ‎proper slant lightlike submanifolds of indefinite Sasakian manifolds other than totally contact geodesic‎ ‎proper slant lightlike submanifolds‎. ‎We also prove that there do‎ ‎not exist totally contact umbilical proper slant lightlike‎ ‎submanifolds of indefinite Sasakian space forms‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004